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Abstract. Some 3–3–1 models predict the existence of a non-perturbative regime at the TeV scale. We
study in these models and their supersymmetric extensions, the energy at which the non-perturbative limit
and a Landau-like pole arise. An order of magnitude for the mass of the extra neutral vector boson, Z′,
present in these models is also obtained.

PACS. 12.60.Cn, 12.60.Jv

1 Introduction

The so called 3–3–1 extensions of the standard model (SM)
are interesting options for the physics at the TeV scale [1,2].
Although these models coincide at low energies with the
SM, they explain some fundamental questions that are
accommodated, but not explained by the former. For in-
stance, i) in order to cancel chiral anomalies the number
of generation Ng must be a multiple of three, but because
of the asymptotic freedom in QCD, which implies that the
number of generations must be Ng ≤ 5, it follows that in
those models the only number of generations allowed is
Ng = 3; ii) these models as any with SU(3)W symmetry
explain why sin2 θW < 1/4 at the Z-pole (see below); iii)
the electric charge is quantized independently of the nature
of neutrinos [3]; iv) the Peccei-Quinn symmetry is almost
an automatic symmetry of the classical Lagrangian [4] and
with a minimal modification, the PQ symmetry as the
solution to the strong CP problem is automatically im-
plemented and the axion is protected against semiclassical
gravity effects [5]; v) the theory becomes non-perturbative
at the TeV scale, and the same happens with the respective
N = 1 supersymmetric version [6]. There are other mod-
els with SU(3)W symmetry [7], but some of them imply
charged heavy bileptons which are stable, that in turn lead
to potentially cosmological troubles [8]. Another interest-
ing possibility to consider is by introducing extra dimen-
sions [9] and the orbifold compactification [10,11], or other
sort of 3–3–1 models as in [12]. A common feature of mod-
els with SU(3)W electroweak symmetry is the existence of
simply and doubly charged or neutral non-hermitian vec-
tor bosons. For instance, the doubly charged and neutral
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vector bosons can be discovered by measurement of the
left-right asymmetries in lepton-lepton scattering [13,14],
in muonium-antimuonium transitions [15, 16] or in accel-
erator processes [17,18].

One of the main feature of these models is the fact that
when the gL and gX coupling constants of the gauge groups
SU(3)L and U(1)X , respectively, are related with the elec-
troweak mixing angle, the following relation is obtained

g2
X

g2
L

=
sin2 θW

1 − 4 sin2 θW

(1)

in the models of [1,2]. When sin2 θW (µ) = 1/4 the coupling
constant gX(µ) becomes infinite, i.e., a Landau-like pole
arises, however the theory loses its perturbative character
even at an energy scale lower than µ. The other possibility
gL → 0 is ruled out since gL is the same as in the standard
model, g2, due to the fact that the SU(2)L subgroup is
totally embedded into SU(3)L.

The possible existence of a Landau-like pole in 3–3–
1 models is not unexpected since every non-assintotically
free theory seems to has such a behavior. The new feature
is that in some of these models that behavior may happens
at energies of just few TeVs. This will imply that the cut-
off, Λcutoff , in the theory can not be eliminated, by taking
Λcutoff → ∞, as it is expected in renormalizable theories.
In this limit the theory might be a trivial theory. This is
supposed to be the case of pure QED since the works of
Landau and co-workers [19]. From the phenomenological
point of view this result is not very dangerous, we already
know that QED has to be embedded in the electroweak
theory at a few hundred GeVs, and also that weak and
strong correction have to be taken into account in the
calculations of physical observables, even those that are
purely electromagnetic in origin, like the (g−2)µ factor, etc.
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However, as a mathematical laboratory it is interesting
to study pure QED at arbitrary small distances. In fact,
lattice calculation suggests that chiral symmetry breaking
allows QED to escape the Landau pole problem [20, 21].
This should happen because the chiral symmetry breaking
is always strong enough to push the Landau pole above
the cutoff [20]. It is interesting that the possibility of the
existence of the Landau pole, or that the theory is a triv-
ial one, arises already at the lower order in perturbation
theory. More sophisticated calculations only enhance our
confidence that this phenomenon is not an effect of the
perturbation theory at lowest order. This is in accord with
the point of view that the renormalization group provide
qualitative guidance with respect to the asymptotic be-
havior at very high energies even where coupling constant
at the scale of interest are too large to allow the use of
perturbation theory. In particular this method provides
usual insight into the types of possible behavior in field
theories [22].

Notwithstanding, we must remember that both QED
and the standard model are effective, and not fundamental
theories. It means that effective operators with dimensions
higher that d = 4 have to be considered if we want, for
instance, to get a realistic continuum limit in lattice cal-
culations [22]. Thus it seem that using the pure versions of
these models are still inconclusive and the renormalization
group may give an insight in this issue in 3–3–1 models.

The possibility of triviality implies that new phenomena
must enter before the reach the Landau pole: or a new
phase of the theory or the theory must be embedded in a
more general one. This has been used in the context of the
standard model to constraint the upper value of the Higgs
boson mass [23]. Moreover, recently it has been argued that
this upper limit on the Higgs bosons mass does not come
from an instability of the vacuum [24].

In the past years some authors, using perturbation the-
ory, have calculated the energy scale at which the weak
mixing angle get the 0.25 value [25–27]. They have been
found, taking into account only the degrees of freedom of
the standard model, that this condition occurs at an en-
ergy scale of the order of 3–4 TeV in the model of [1]. This
value is an upper limit of the energy scale at which the
Landau-like pole occurs (see the discussion in Sect. 6).

Our goal in this paper is to study the running of sin2 θW

with energy in 3–3–1 models [1,2] and their supersymmet-
ric extensions given in [6]. However, since we have verified
that, with the representation content of the minimal mod-
els gL does not change significatively, we study the running
of gX . We confirm the order of magnitude of the results
of the previous works but we considered a more general
scenario, when the SU(3)L symmetry breakdown scale,
µ331, is inside the perturbative range and when the ex-
otic quarks or SUSY particles are considered much heavier
than the other particles. As previous calculations, ours are
also done at the 1-loop level but we briefly comment the
2-loop case. For this reason our result have to be seen as an
estimative of the energy scale where sin2 θW = 0.25. Using
the perturbation theory to find a singularity could appears
self-contradictory, however, we recall that this behavior at
relatively low energy, arises because of the constraint in

(1). We think that our calculations as the previous ones in
3–3–1 models are only preliminary results. When lattice
calculations, or other more appropriate techniques, were
available they could be compared with those 1-loop calcu-
lations, as is usually done in the λφ4 or QED cases [24].

The outline of this paper is as follows. In Sect. 2 we
revise briefly the minimal representation content of two
3–3–1 models that will be considered next. In Sect. 3 we
give the evolution equation and calculate the bi coefficients
in each model with and without supersymmetry. In this
section we also reproduce the calculations of [25–27] of the
energy at which the condition s2

W = 0.25 is satisfied, taking
into account only the degrees of freedom of the standard
model. In Sect. 4, we study the evolution of αX ≡ g2

X/4π,
and calculate the energy scale, M ′, at which αX(M ′) > 1.
We also compare this energy with Λ defined as αX(Λ) = ∞,
taking into account the degrees of freedom of the 3–3–1
models for energies above an energy scale that we denote
µ331. The last section is devoted to our conclusions.

2 3–3–1 Models
with doubly charged vector bosons

The models that we will take into account in this section
are characterized by the electric charge operator,

QA =
1
2

(
λ3 −

√
3λ8

)
+ X , (2)

with twodifferent representation content in the leptonic sec-
tor that are giving either byΨaL = (νa, la, E+

a )T
L ∼ (1,3, 0)

(Model A) or by ΨaL = (νa, la, lca)T
L ∼ (1,3, 0) (Model B),

a = e, µ, τ . Both models contain doubly charged vector
bosons. In the first case, we have to add singlets laR ∼
(1,1, −1), EaR ∼ (1,1, +1); and neutrinos νaR ∼ (1,1, 0),
if necessary. In the second case only right-handed neutri-
nos have to be added, also if necessary. However, since
neutral singlet representations do not affect the running of
the coupling constants, we will not worry about
them here. In both models the quarks transform as
follows: QiL = (di, ui, ji)T

L ∼ (3, 3∗, −1/3); i = 1, 2;
Q3L = (u3, d3, J)T

L ∼ (3,3, 2/3), with the singlets
uαR ∼ (1,1, 2/3), dαR ∼ (1,1, −1/3), α = 1, 2, 3, jiR ∼
(1,1, −4/3), and JR ∼ (1,1, 5/3),

In these models there are fields with masses of the
order of magnitude of the SU(3)L energy scale. For in-
stance, in Model A the scalar fields necessary to break the
gauge symmetry down to U(1)Q and giving the correct
mass to all fermions in the model are three triplets: η =
(η0, η−

1 , η+
2 )T ∼ (1,3, 0), ρ = (ρ+, ρ0, ρ++) ∼ (1,3, 1)

and χ = (χ−, χ−−, χ0) ∼ (1,3, −1). We will denote the
vacuum expectation values as follows: 〈η0〉 = u/

√
2, 〈ρ0〉 =

v/
√

2 and 〈χ0〉 = w/
√

2. In Model B it is necessary to add
an scalar sextet S ∼ (1,6, 0)

S =


σ0

1 h−
1 h+

2
h−

1 H−−
1 σ0

2

h+
2 σ0

2 H++
2


 , (3)
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andwewill use the notation 〈σ0
2〉 = v2/

√
2. It is also possible

to have 〈σ0
1〉 	= 0 giving to the neutrinos a Majorana mass.

We will not be concerned with this here.
In Model A the physical scalar spectra are such that a

singly charged scalar, which is a linear combinations of η+
1

and ρ+, has the square mass [28]

M2
1+ ∝

(
u2 + v2 − fwv

u
− fuw

v

)
, (4)

and the other singly charged scalar is a linear combination
of η+

2 and χ+ and has a square mass

M2
2+ ∝

(
w2 + v2 − fvw

u
− fuv

w

)
, (5)

where f < 0 is the trilinear coupling with dimension of
mass. We see that even if f = 0 only one of the singly
charged scalar has a low mass, the other one has a mass
square proportional to w2, so it is heavy enough (unless
it is fine tuned) to be decoupled from low energy physics
(below the breaking of the SU(3)L symmetry). The same
happens with the doubly charged physical scalar, a linear
combination of ρ++ and χ++, with a mass square

M2
++ ∝

(
w2 + v2 − fuv

w
− fuw

v

)
, (6)

and we see that it is also too heavy (unless fine tuned)
and it will not be considered at low energies. On the other
hand, in the real scalar fields sector, there are three physical
scalar Higgs, two states that do not depend on w and f
having square masses of the order of u2 + v2 and the other
one is heavy. It means that at low energies we consider
two scalar doublets of SU(2)L when we use the standard
model degrees of freedom. The vector bosons, V −, U−−,
the exotic quarks and scalar singlets, all of them may be
heavy since their masses are proportional to w. The extra
neutral vector boson Z2, has an even higher mass and also
it will not be considered at low energies. This vector bosons
is a mixture of Z and Z ′, but if we neglect this mixture
Z2 ≈ Z ′.

3 The evolution equations

The evolution equations of the coupling constants at the
one loop level are given by

1
αi(M)

=
1

αi(MZ)
+

1
2π

bi ln
(

MZ

M

)
, i = 1, 2, 3; (7)

where αi = g2
i /4π and g3, g2, g1 are the coupling constant

of the SU(3)C , SU(2)L, U(1)Y gauge groups, respectively.
In the context of 3–3–1 models we define the bi coefficients
corresponding to the coupling constants g3, gL, gX of the
gauge groups SU(3)C , SU(3)L, U(1)X , respectively.

For a general SU(N) gauge group the bi coefficients are
given by

bi =
2
3

∑
fermions

TRi(F ) +
1
3

∑
scalars

TRi(S) − 11
3

C2i(G) (8)

for Weyl fermions and complex scalars, and TR(I)δab =
Tr[T a(I)T b(I)] with I = F, S; TR(I) = 1/2 for the funda-
mental representation,C2(G) = N forSU(N) andC2(G) =
0 for U(1). For U(1)y we use

∑
TR1(F, S) =

∑
y2 where

y = Y/2 for the standard model and y = X for the 3–3–1
models. On the other hand for the respective supersym-
metric version we have

bsusy
i =

∑
fermions

TRi(F ) +
∑

scalars

TRi(S) − 3 C2i(G) , (9)

and only the usual non-supersymmetric fields are
counted now.

We will assume that the standard model with several
scalar multiplets is valid until an energy scale µ331, i. e.,
below µ331 we consider the SM plus some light scalar dou-
blets or triplets. A SU(2)L ⊗ U(1)Y model with Ng = 3
fermion generations, NH scalar doublets (Y = ±1) and
NT non-hermitian scalar triplets (Y = 2), using (8) and
the representation content above, implies

b1 =
1
6

NH + NT +
20
3

,

b2 =
1
6

NH +
2
3

NT − 10
3

,

b3 = −7 . (10)

Notice that we have not used a grand unification normal-
ization for the hypercharge Y assignment. Since we will
assume that µsusy ≈ µ331 when considering the SUSY ex-
tensions of a 3–3–1 model, below µ331 the only effect of
supersymmetry will be the addition of light scalar mul-
tiplets. Above µ331, we have to consider the degrees of
freedom of the 3–3–1 models.

The heavy leptons, Ea in Model A, quarks J and ji; the
scalar singlets η+

2 , ρ++; the scalar doublets like (χ−, χ−−);
and finally, the vector doublets like (V −, Y −−) and the
extra neutral vector boson, Z ′, will not be considered as
active degrees of freedom below µ331. Hence, in non-SUSY
Model A we have NH = 2 and NT = 0; in the SUSY version
NH = 4 and NT = 0. In the non-SUSY Model B we have
to take into account the scalar sextet which implies an
additional doublet and an non-hermitian triplet, so that
NH = 3 and NT = 1, and NH = 6 and NT = 2 in the
SUSY case.

In the energy regime below µ331 we use the standard
definition for sin2 θW (µ):

sin2 θW (µ) =
1

1 + α2(µ)
α1(µ)

, µ ≤ µ331 . (11)

With this equation for the weak mixing angle and the bi

coefficients in (10), we obtain the value of sin2 θW (µ331)
using the running equation of α−1

1,2 given by (7), which will
be used as an input for the case of energies above µ331.
The values of the energies at which sin2 θ̂W (Λ) = 0.25 (at
which the curves cut the values 0.25), in models A and
B with and without supersymmetry, are shown in Fig. 1.
These energies give an order of magnitude of the energy
scale of the Landau Pole. In particular, for the non-SUSY
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Fig. 1. Running of the electroweak mixing angle for Mod-
els A and B considering only the degrees of freedom of the
effective 3–2–1 model. (s) stands for the respective supersym-
metrized version

Model A (leftmost curve in the figure) we obtain a value
for Λ in agreement with that of [25–27], i.e., ≈ 4 TeV.

Next, we consider the case of energies above the scale
µ331. Now we have to use the relation

sin2 θW (µ) =
1
4

1

1 + αL(µ)
4αX(µ)

≤ 1/4 , µ ≥ µ331 , (12)

and the running equation we will be concerned is

1
αX(µ)

=
[
1 − 4 sin2 θ̂W (MZ)

] 1
α(MZ)

+
1
2π

(b1 − 3b2)

× ln
(

MZ

µ331

)
+

1
2π

br
X

ln
(

µ331

µ

)
, (13)

where br
X , with r = A, B, are given below by (14) for Model

A, or by (15) forModelB, respectively;with sin2 θ̂W (MZ) =
0.2311, α(MZ) = 1/128 and MZ = 91.188 GeV [29].

The bi coefficients in Model A, with and without SUSY,
when the degrees of freedom above µ331 are taken into
account, are given by:

bA
X = 24 + Nρ + Nχ ,

bA
X/J = 10 + Nρ + Nχ ,

b
A(susy)
X = 36 + 3(Nρ + Nχ) ,

b
A(susy)
X/J = 15 + 3(Nρ + Nχ) . (14)

Similarly, for the case of Model B, we have

bB
X = 20 + Nρ + Nχ ,

bB
X/J = 6 + Nρ + Nχ ,

b
B(susy)
X = 30 + 3(Nρ + Nχ) ,

b
B(susy)
X/J = 9 + 3(Nρ + Nχ) . (15)

In (14) and (15) we also show the cases when we omit the
exotic quarks (this is denoted by /J in bX). We recall that

in the supersymmetric versions we have assumed µsusy ≈
µ331.

In the minimal non-SUSY version of models A and B,
we have Nρ = Nχ = 1 and Nρ = Nχ = 2 in the respective
SUSY models. Notice that in both models adding more
triplet of scalars like ρ and χ enhance bX and produce
a lower value for Λ. In the SUSY version the running is
always faster.

4 The Landau pole

We see from (12) that αX(µ) → ∞ when µ → Λ, and we
have sin2 θW (µ) → 0.25. This is the Landau pole that we
have mentioned in Sect. 1. In practice we study, using (13),
what is the energy µ = M ′ at which αX(M ′) > 1, i.e.,
the condition when αX becomes non-perturbative and we
compare this result with the energy Λ calculated directly
by the expression

Λ = µ331 exp
(

2π

bXαX(µ331)

)
, (16)

which must coincide with, or be of the same order, the
value obtained by using the condition sin2 θW (Λ) = 0.25.
Of course, we expect that M ′ � Λ.

4.1 The Landau pole in model A

As we said before, at energies below µ331 there is an ap-
proximated SU(3)C ⊗SU(2)L ⊗U(1)Y symmetry with the
particle content of the SM plus a second scalar doublet, i.
e., in the context of Model A: in the fermion sector there are
the usual doublets (νa, la)L ∼ (1,2, −1) and (uα, dα)L ∼
(3,2, 1/3); the singlets laR ∼ (1,1, −2) (and right-handed
neutrinos but they do not affect the running of the con-
stants); and uαR ∼ (3,1, 4/3), dαR ∼ (3,1, −2/3). In the
scalar sector we have two doublets (η0, η−

1 ) ∼ (1,2, −1)
and (ρ+, ρ0) ∼ (1,2, +1).

These are the degrees of freedom that are active at
energies µ ≤ µ331. Hence, we have NH = 2, NT = 0 in
the non-SUSY model and NH = 4, NT = 0 in the SUSY
one. With this particle content we have from (10) [for
completeness we include the coefficient b3]:

(b1, b2, b3) = (7, −3, −7) ,

(b1, b2, b3)susy = (22/3, −8/3, −7) , (17)

and using (11) for obtaining αX(µ331). If we use only the
degrees of freedom that were used in obtaining the coef-
ficients above we get, using (11), that sin2 θ̂W (Λ) = 0.25
when Λ ≈ 4.10 TeV in the non-SUSY case and Λ ≈ 4.8 TeV
in the SUSY case, as can be seen from Fig. 1.

Above the µ331 scale, the full representation of the 3–3–1
model have to be taken into account and we get, according
to (14) [for future use we have included the coefficients
bL, b3],

(bX , bL, b3)A = (26, −13/2, −5) ,
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Table 1. Values of M ′ and Λ for the non-SUSY Model A. The
number inside parenthesis are the values for the case when we
omit the exotic quarks in the running equation. We show, in
the last column, an estimative for the mass of the Z′ vector
boson. All masses are in TeV

µ331 α̂X(µ331) M ′ Λ MZ′(µ331)
2.0 0.55 2.4(3.0) 3.1(5.2) 5.2
1.5 0.39 2.2(3.4) 2.8(5.7) 3.3
1.0 0.28 1.9(3.9) 2.4(6.5) 1.9
0.75 0.23 1.7(4.2) 2.1(7.1) 1.3
0.5 0.19 1.4(4.8) 1.8 (8.2) 0.8

Table 2. Same as Table 1 but for the SUSY Model A

µ331 α̂X(µ331) M ′ Λ MZ′(µ331)
2.0 0.47 2.3(2.6) 2.6(3.3) 4.9
1.5 0.35 1.9(2.3) 2.1(2.9) 3.1
1.0 0.26 1.4(1.9) 1.6(2.4) 1.8
0.75 0.22 1.2(1.7) 1.3(2.1) 1.2
0.50 0.18 0.9(1.4) 1.0 (1.8) 0.75

(bX , bL, b3)A
/J = (12, −13/2, −7) ;

(bX , bL, b3)A(susy) = (48, 0, 0) ,

(bX , bL, b3)
A(susy)
/J = (27, 0, −3) . (18)

With the exotic quarks we will consider two situations.
First, that they have masses below Λ and are taken into
account in the evolution equations in the interval [µ331, Λ];
second, we assume that their masses are higher than Λ and
are not considered in the running coupling constants.

The result for the non-supersymmetric model appear
in Table 1 for different values for the µ331 scale: 2.0, 1.5,
1.0, 0.75 and 0.50 TeV. The same is done in Table 2 for
the supersymmetric model. In both cases the M ′ and Λ
valueswhen the exotic quarks are consideredheavyuntil the
Landau pole scale are shown in parenthesis in the respective
table. In the last column we show an order of magnitude
of the Z ′ neutral vector boson (see below).

4.2 The Landau pole in model B

In this case below µ331 in the scalar sector we have to
consider three doublets (η0, η−

1 ) ∼ (1,2, −1), (ρ+, ρ0),
(h+

2 , σ0
2) ∼ (1,2, +1); and one non-hermitian triplet T ∼

(1,3, +2). With this particle content we have from (10), be-
lowµ331 i.e., we haveNH = 3andNT = 1 (NH = 6, NT = 2
in the SUSY case):

(b1, b2, b3) = (49/6, −13/6, −7) ,

(b1, b2, b3)susy = (32/3, −1, −7) . (19)

If we use only the degrees of freedom that were used in
obtaining the coefficients above we get again, from (11),
that sin2 θ̂W (Λ) = 0.25 when Λ ≈ 5.7 TeV in the non-SUSY

Table 3. Same as Table 1 but for the Model B

µ331 α̂X(µ331) M ′ Λ MZ′(µ331)
2.0 0.40 3.0(6.3) 4.0(13.9) 4.5
1.5 0.32 2.7(8.0) 3.8(17.7) 3.0
1.0 0.24 2.4(11.3) 3.2(24.8) 1.7
0.75 0.21 2.2(14.4) 2.9(31.5) 1.2
0.5 0.17 1.9(20.1) 2.5 (44.2) 0.7

Table 4. Same as Table 2, but for the SUSY Model B

µ331 α̂X(µ331) M ′ Λ MZ′(µ331)
2.0 0.34 2.7(3.5) 3.1(4.8) 4.1
1.5 0.28 2.2(3.2) 2.5(4.4) 2.8
1.0 0.22 1.7(2.8) 1.9(3.8) 1.7
0.75 0.19 1.4(2.5) 1.6(3.4) 1.1
0.5 0.17 1.0(2.2) 1.2(3.0) 0.7

case and Λ ≈ 7.8 TeV in the SUSY case, as can be seen
from Fig. 1. If we consider the doublet (h+

2 , σ0
2) heavy (but

keeping its VEV small) we get b1 = 8 and bsusy
1 = 28/3

and the values for M ′ and Λ are a little bit smaller than
the case considered here.

Above the µ331 scale, the full representation of the 3–
3–1 model have to be taken into account and we obtain,
according to (15) [again for future use we have included
again the coefficients bL, b3],

(bX , bL, b3)B = (22, −17/3, −5) ,

(bX , bL, b3)B
/J = (8, −17/3, −7) ,

(bX , bL, b3)B(susy) = (42, 5, 0) ,

(bX , bL, b3)
B(susy)
/J = (21, 5, −3) . (20)

The results are shown in Table 3 for the non-SUSY Model
B and in Table 4 for the respective SUSY model.

5 Z′ mass and 2-loop evolution equations

The Z ′ is the heaviest vector boson of the models, the Lan-
dau pole energy scale (Λ) is supposed to be an upper limit
for its mass in the context of a perturbative approach [25].
However, the mass of this boson, at the scale µ331, and
assuming 〈χ0〉 ≈ µ331 has an order of magnitude given by

MZ′(µ331) � [4π αX(µ331)]1/2 µ331 . (21)

The values for the estimative of MZ′ using (21) are shown
in the last column of Tables 1–4. We see that for some
values of αX , MZ′ is larger than M ′ or Λ.

It is interesting to note that in the SUSY version of
Model A at energies above µ331 the dependence with the
energy in SU(3)L and SU(3)C is lost since, as can be seen
from (18), at the 1-loop we have that bL = b3 = 0, i.e.,

αL(µ > µ331) = α3(µ > µ331) = constant , (22)
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and the same occurs for SUSY Model B for α3 as shown
in (20). We can wonder if this is an artifact of the 1-loop
approximation. Thus, let us consider the two-loop evolution
equations that are given by

µ
d αi(µ)

d µ
=

1
2π


bi +

1
4π

3∑
j=1

bijαj(µ)


 αi(µ)2 , (23)

where we have not considered the Yukawa couplings since in
any case their dominant contributions seems to be positive.
For example, in SUSY Model A [30]

bij =




784
3 + 12(Nρ + Nχ) 32 + 16(Nρ + Nχ) 160
4 + 2(Nρ + Nχ) 14 + 17

3 (Nρ + Nχ) 48
62
3 24 48


.(24)

In fact, in (23), we have Nρ = Nχ = 2 since we are con-
sidering the SUSY version. We see that even at this order
the asymptotic freedom for QCD has been lost for energies
higher than µ331. The lose of the asymptotic freedom at
higher energies, for both the SUSY Model A and B is a
prediction of the models since this result does not depend
on the value of µ331. Of course, a more careful analysis
should be done.

6 Discussions

We have re-examined the question of the non-perturbative
limit and the Landau-like pole in 3–3–1 models. In addition
we have considered the respective supersymmetric versions
and also the situation when the exotic quarks are heavy
enough and do not enter in the running equation of αX . In
practice what we have studied is the energy scale at which
a model loses its perturbative character, M ′, or calculated
directly theLandaupole,Λ, from (16).Wefind, as expected,
that for all these models these energy scales are of the same
order of magnitude, i.e., M ′ � Λ.

From Table 1 we see that for Model A, the values of M ′
and Λ decrease with the value of µ331 but increase for lower
µ331 if we omit the exotic quarks in the running equation.
The maximal values of 4.8 TeV or 8.2 TeV without the
exotic quarks, respectively, occur when µ331 = 500 GeV.
For the respective SUSY cases, we see from Table 2 that
M ′ and Λ always decrease with µ331 and also that they
have lower values than the respective non-SUSY model.
The result for the model with the scalar sextet (Model B)
are shown in Tables 3 and 4. The largest value for M ′ (Λ) is
20.1 (44.2) TeV when the heavy quarks are not considered.
As in Model A, both scales also decrease with the value of
µ331.

Notice that from Table 1, the value of Λ (or M ′) for
Model A (without SUSY) is always lower than the value
obtained in [25–27] and in Fig. 1. As we have mentioned
before, the latter value should be an upper limit for Λ.
This is confirmed when the extra degrees of freedom of
the 3–3–1 model are taken into account, for energies above
µ331. As said before, we can see from Tables 1–4, the value

of Λ increases when the scale µ331 increases. But, as µ331
becomes larger the difference between both energy scales
becomes smaller and in some point µ331 must be equal to Λ.
However, notice also that when we omit from the analyses
the exotic quarks this upper bound is evaded. This happens
because the right-handed components of those quarks have
the largest value of the U(1)X charge making that αX

run more rapidly compared to the case where only the
standard model particles are taken into account. When
the heavy quarks are switched off αX run again slowly
and the Landau-like pole occurs at a higher energy. The
scenarioswithout the exotic quarks couldbe realized if there
are strong dynamical effects with these degrees of freedom
in this range of energy an probably the number of scalar
multiplets of these models may be lower than it has been
considered [31]. Notice also that since SUSY implies more
degrees of freedom the values of M ′ and Λ are always lower
than in the respective non-SUSY model. If the Landau pole
is calculated by using only the degrees of freedom below
the 3–3–1 energy and the condition sin2 θW (Λ) = 0.25 from
(11), the value obtained is shown in Fig. 1. Since the value
of µ331 is below of these values we have studied how the
value of the pole and the perturbative limit are modified
when 0.5 ≤ µ331 ≤ 2 TeV.

Finally, let us mention that there is another type of
3–3–1 model in which the right-handed neutrinos or heavy
neutral leptons belong to the same triplet than the ordinary
leptons [32,33]. The charge operator is defined in this case as

QB =
1
2

(
λ3 − 1√

3
λ8

)
+ X . (25)

In this sort of models the Landau pole arise above the
Planck scale and for this reason it has no physical con-
sequences. However, models with electric charge operator
defined by (2) and (25) are embedded in an SU(3)C ⊗
SU(4)L ⊗ U(1)N but in this 3–4–1 model the relating the
coupling constant gL and gX is given also by (1) [34]. Thus,
our results are also valid for the case of 3–4–1 models.
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